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A B S T R A C T

The phosphatidylinositol 3-kinase (PI3K) signaling axis impacts on cancer cell growth, survival,
motility, and metabolism. This pathway is activated by several different mechanisms in cancers,
including somatic mutation and amplification of genes encoding key components. In addition, PI3K
signaling may serve integral functions for noncancerous cells in the tumor microenvironment.
Consequently, therapeutics targeting the PI3K pathway are being developed at a rapid pace, and
preclinical and early clinical studies are beginning to suggest specific strategies to effectively use
them. However, the central role of PI3K signaling in a large array of diverse biologic processes
raises concerns about its use in therapeutics and increases the need to develop sophisticated
strategies for its use. In this review, we will discuss how PI3K signaling affects the growth and
survival of tumor cells. From this vantage, we will consider how inhibitors of the PI3K signaling
cascade, either alone or in combination with other therapeutics, can most effectively be used
for the treatment of cancer.

J Clin Oncol 28:1075-1083. © 2010 by American Society of Clinical Oncology

INTRODUCTION

It has been more than 20 years since phosphatidyl-
inositol 3-kinase (PI3K) was first discovered. The
transforming ability of viral oncoproteins re-
lied on an association with a PI3K lipid kinase
activity.1-4 Over the ensuing years, studies es-
tablished the central role of PI3K signaling in
several cellular processes critical for cancer pro-
gression, including metabolism, growth, survival, and
motility. Inappropriate co-option of PI3K signaling
is one of the most frequent occurrences in human
cancer.5,6 Consequently, significant efforts have
been made to generate inhibitors of the PI3K path-
way to treat cancers. However, it remains unknown
which cancers will benefit most from these treat-
ments and how to best use such therapeutics. In
addition, the many possible untoward biologic
sequelae of PI3K inhibition may limit the poten-
tial therapeutic gain of PI3K pathway inhibition.
Here we will review data demonstrating the role of
PI3K in tumor development and maintenance. We
will compare the different potential therapeutic op-
tions for inhibiting this pathway and how their
efficacy may be affected by the mechanism of
PI3K pathway activation in a particular cancer.
Finally, we will discuss the emerging data assess-
ing the relative benefits of PI3K pathway inhibi-
tors used as single agents versus combination
therapies to treat cancer.

PI3K SIGNALING CASCADE REGULATES CELL
GROWTH AND SURVIVAL

There are three classes of PI3Ks grouped accord-
ing to structure and function. Class IA PI3K is the
one most clearly implicated in human cancer.7

Class IA PI3Ks consist of a regulatory subunit and a
catalytic subunit. Three mammalian genes, PIK3R1,
PIK3R2, and PIK3R3, encode p85� (p85�, p55�,
and p50� isoforms), p85�, and p55� regulatory
subunits, respectively, which by convention are re-
ferred to collectively as p85.5,7,8 The catalytic iso-
forms, p110�, p110�, and p110�, are the products
of three genes, PIK3CA, PIK3CB, and PIK3CD.5,8 As
will be discussed in greater detail below, both
PIK3CA and PIK3R1 are somatically mutated in
cancers, and these mutations promote activation of
the PI3K pathway.9-12

Class IA PI3Ks are activated by growth factor
stimulation through receptor tyrosine kinases
(RTKs).13-15 The regulatory subunit, p85, directly
binds to phosphotyrosine residues on RTKs and/or
adaptors.16 This binding relieves the intermolecular
inhibition of the p110 catalytic subunit by p85 and
localizes PI3K to the plasma membrane where its
substrate, phosphatidylinositol 4,5-bisphosphate
(PI[4,5]P2), resides.15,16 PI3K can also be stimulated
by activated Ras, which directly binds p110.17 Addi-
tionally, the p110� catalytic subunit can be activated
by G-protein coupled receptors.8
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PI3K phosphorylates PIP2 on the 3�OH position to produce
PI(3,4,5)P3 (PIP3; Fig 1). The tumor suppressor phosphatase and
tensin homolog deleted on chromosome 10 (PTEN) dephospho-
ryates PIP3 to PIP2, thereby terminating PI3K-dependent signal-
ing. PIP3 propagates intracellular signaling by directly binding
pleckstrin homology (PH) domains of various signaling proteins.18

PI(3,4,5)P3 brings two PH domain-containing serine/threonine ki-
nases, phosphoinositide-dependent kinase 1 (PDK1) and AKT, into
close proximity. PDK1 activates AKT by phosphorylating AKT at
threonine 308.19-21 PI3K-AKT signaling promotes cell growth and
survival by several mechanisms. AKT promotes cell survival by inhib-
iting proapoptotic Bcl-2 family members BAD and BAX.5,18 AKT also
impedes negative regulation of the transcription factor NF-�B, leading
to increased transcription of antiapoptotic and prosurvival genes.22

Phosphorylation of Mdm2 by AKT antagonizes p53-mediated apo-
ptosis, and AKT negatively regulates forkhead transcription factors,
thereby reducing production of cell death-promoting proteins.22

AKT also phosphorylates TSC2, thereby inhibiting the rheb GTPase
activity of the TSC1/TSC2 dimer. Activated rheb stimulates the mam-
malian target of rapamycin (mTOR) –containing protein complex
mTORC1, leading to increased p70 S6 kinase activity.5 Activation of
mTORC1 results in increased protein synthesis by phosphorylation of
eukaryotic initiation factor 4E and the ribosomal S6 protein.5 While
mTORC1 relays signals following PI3K-AKT activation, a second
mTOR complex, mTORC2, contributes to complete AKT activation
by phosphorylating AKT on serine 473.23-25 Of note, activation of the
mTORC1 target, S6 kinase, negatively feeds back to diminish PI3K

activation. S6 kinase can phosphorylate and inhibit the adaptor pro-
tein insulin receptor substrate 1, thereby inhibiting insulin or insulin-
like growth factor 1–mediated PI3K activation.26-28

Inhibitors of PI3K Signaling in Cancer Treatment

Inhibition of PI3K signaling can diminish cell proliferation, and
in some circumstances, promote cell death. Consequently, compo-
nents of this pathway present attractive targets for cancer therapeutics.
A number of PI3K pathway inhibitors have been developed and are
being evaluated in preclinical studies and in early clinical trials. Rapa-
mycin analogs, such as temsirolimus and everolimus, that specifically
inhibit mTORC1 are the most advanced in the clinic, and they have
received US Food and Drug Administration approval for the treat-
ment of advanced renal cell carcinoma.29 The role for rapamycin
analogs in the treatment of cancer has been extensively reviewed
elsewhere and thus will not be discussed further.30 In this review, we
will discuss the potential therapeutic roles for other PI3K pathway
inhibitors. These include PI3K inhibitors (both pan-PI3K and
isoform-specific PI3K inhibitors), dual PI3K-mTOR inhibitors that
are catalytic site inhibitors of the p110 isoforms and mTOR (the kinase
component of both mTORC1 and mTORC2), mTOR catalytic site
inhibitors, and AKT inhibitors. Not only do these agents have the
capacity to inhibit cancer cell proliferation and survival signals as
described above, but they may also impact tumor angiogenesis, me-
tastasis, and metabolism. Due to space limitations, the impact of PI3K
inhibition on tumor angiogenesis and cell motility is discussed in the
Appendix (online only).
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Fig 1. The phosphatidylinositol 3-kinase
(PI3K) signaling cascade. PI3K signaling
impacts on cell growth, survival, and me-
tabolism. Arrows represent activation,
while bars reflect inhibition. A negative
feedback loop has been described from
the downstream target S6 kinase (S6K) to
the adaptor protein IRS-1. RTK, receptor
tyrosine kinase; GPCR, G-protein coupled
receptor; P, phosphate; G, G protein; PTEN,
phosphatase and tensin homolog; IRS-1, in-
sulin receptor substrate 1; eIF4E, eukaryotic
initiation factor 4E; S6, ribosomal S6 protein;
PIP2, phosphatidylinositol 4,5-bisphosphate;
mTORC2, rapamycin (mTOR) –containing
protein complex 2. (*) p110 alpha, beta,
or delta.
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PI3K and Insulin Signaling: Potential Toxicity and

Pharmacodynamic Marker of PI3K Inhibition

PI3K signaling has a central role in mediating the effects of insulin
on cellular metabolism that is conserved throughout eurkaryotic evo-
lution.5 Noninsulin-dependent diabetes mellitus, marked by insulin
insensitivity, is associated with diminished PI3K response to insulin
signaling.5,31 Several transgenic and knockout mice harboring alter-
ations in p85, p110, PTEN, or AKT2 validate the functional signifi-
cance of this pathway on glucose homeostasis.31-34 These data suggest
that insulin resistance may be observed in patients treated with PI3K
pathway inhibitors, and indeed this may be used as a pharmacody-
namic marker of target inhibition in patients. As will be discussed
further below, initial phase I studies with PI3K pathway inhibitors
have demonstrated some signs of insulin resistance, but this has not
been a dose-limiting toxicity. While both p110� and p110� appear to
play specific roles in insulin signaling, studies suggest that glucose
homeostasis is predominantly mediated by p110�.35,36 Inhibitors of
p110�, but not p110� or p110�, have been shown to inhibit insulin-
stimulated glucose uptake in adipocytes and to block insulin-
mediated glucose regulation in mice.36 Consequently, in settings
where p110� appears to be the critical PI3K catalytic isoform mediat-
ing transformation (eg, some PTEN-deficient tumors, see below), a
p110�-specific inhibitor may offer efficacy with decreased risk of
insulin resistance compared with a pan-PI3K inhibitor.

ACTIVATION OF PI3K SIGNALING IN CANCER

PI3K signaling is activated in human cancers via several different
mechanisms.6,11-13 Increased PI3K signaling is often due to direct
mutational activation or amplification of genes encoding key compo-
nents of the PI3K pathway such as PIK3CA and AKT1, or loss of
PTEN.6,9,12,37-41 Genetic alterations in several components of the PI3K

signaling pathway have been reported and are summarized in Table 1.
PI3K also can be activated by genetic mutation and/or amplification of
upstream RTKs, and possibly by mutationally activated Ras.7,17 The
mechanism of PI3K activation in an individual cancer may suggest the
most effective type of therapeutic to inhibit the pathway.

Somatic Alterations of PI3K Pathway Components

in Cancer

The most common genetic alteration of the PI3K signaling
pathway found in human cancer is inactivation of the PTEN tumor
suppressor gene. Inactivation of PTEN leads to loss of its lipid phos-
phatase activity, causing accumulation of PIP3.56,57 The majority of
somatic mutations in PTEN lead to protein truncation. However,
missense mutations that typically abrogate PIP3 phosphatase activity
are also commonly noted.58 While most PTEN mutations are spo-
radic, germline mutations in PTEN are noted in hereditary neo-
plastic disorders, such as Cowden disease.59 Homozygous and
hemizygous deletions of PTEN are also observed in human can-
cers.38,45 Transcriptional repression and epigenetic silencing of
PTEN, typically through promoter hypermethylation, is also a mech-
anism of PTEN inactivation.42,43 Because there are both genetic and
epigenetic causes for PTEN loss, accurate assessment of a cancer’s
PTEN status remains challenging and may ultimately require reliable
measurements of protein expression.

More recently, somatic mutations in PIK3CA have been identi-
fied in a variety of human tumors, including breast, colon, and
endometrial cancers and glioblastomas (see Catalogue of So-
matic Mutations in Cancer, http://www.sanger.ac.uk/genetics/
CGP/cosmic).6,7,9,12,39 Most of these mutations cluster to two hot spot
regions in exons 9 and 20.6,12 Exon 20 encodes the catalytic domain of
p110�, and mutations in this domain may constitutively activate its
enzymatic activity. Exon 9 encodes the helical domain of p110�, and

Table 1. Genetic Alterations of the PI3K Signaling Pathway in Cancer

Gene Alteration Comments Tumor Types References

PTEN LOF mutation Truncation; loss of phosphatase activity Bladder, brain, breast, cervical, colorectal,
endometrial, gastric, head and neck, kidney

COSMIC, Li et al38

Deletion Homozygous or hemizygous Leukemia, liver, lung, lymphoma, melanoma,
ovary, prostate, thyroid

Epigenetic
silencing

Transcriptional repression, usually by promoter
hypermethylation

Breast, colon, melanoma Garcia et al,42 Goel et al,43

Berns et al44

PIK3CA GOF mutation Exon 9 (E542K, E545K) helical domain; exon 20
(H1047R) catalytic domain

Breast, colorectal, glioblastoma, endometrial,
cervical, esophageal, gastric, head and
neck, liver, lung, lymphoma, ovarian,
pancreatic, prostate, thyroid

COSMIC, Samuels et al,6

Samuels et al12

Amplification Increased protein levels and activity Breast, cervical, gastric, lung, ovarian, prostate Sun et al,45 Byun et al,46

Campbell et al,47 Ma
et al,48 Rácz et al49

PIK3R1 GOF mutation Loss of C-terminal inhibitory domain; constitutive
activity

Brain, colon, ovarian Mizoguchi et al,10 Philp et al11

AKT1 GOF mutation Pleckstrin homology domain, membrane
localization, and constitutive activation

Breast, colon, endometrial, melanoma, ovarian Shoji et al,40 Carpten et al,50

Davies et al51

AKT2 GOF mutation Kinase domain mutation Colorectal Parsons et al52

Amplification Breast, colon, lymphoma, pancreas Cheng et al,53 Cheng et al,54

Bellacosa et al55

AKT3 GOF mutation Pleckstrin homology domain, membrane
localization, and constitutive activation

Melanoma Davies et al51

PDK1 GOF mutation Kinase domain mutation Colorectal Parsons et al52

Abbreviations: LOF, loss of function; COSMIC, Catalogue of Somatic Mutations in Cancer at www.sanger.ac.uk/genetics/CGP/cosmic; GOF, gain of function.
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these mutations de-repress an inhibitory interaction between the
N-terminal SH2 domain of p85 and the p110� catalytic subunit.60,61 A
smaller cluster of mutations is also found in the N-terminal p85
interacting domain. Interestingly, these mutations increase the lipid
kinase activity of p110� but do not appear to alter the interaction
between p110� and p85�.9,12

Expression of these PIK3CA mutants leads to increased onco-
genic potential in vitro and in vivo.9,37 They cause constitutive signal-
ing along the PI3K pathway in the absence of growth factors and
therefore seem to obviate the usual obligate interactions with tyrosine
phosphorylated RTKs and/or adapters. Thus, it is intriguing that some
studies have suggested that the presence of these mutations confers
resistance to therapies targeting RTKs.44,62 Expressing mutated
PIK3CA in fibroblasts and mammary epithelial cells results in trans-
formation, growth factor-independent proliferation, and resistance to
apoptosis.9,63,64 Additionally, transgenic mice with lung-specific in-
duction of the kinase-domain mutant p110� H1047R develop lung
adenocarcinomas.65 In addition to these activating mutations, am-
plification of PIK3CA is also observed frequently in ovarian cancer
and other tumors, but how amplification affects PI3K activation is
less clear.39

Mutations in the p85 regulatory subunit PIK3R1 are also ob-
served in a variety of human cancers, including glioblastomas, ovarian
cancers, and colorectal cancers.10,11 Mutations in PIK3R1 generally
produce either truncations or in-frame deletions that often localize to
the inter-SH2 domain of p85�. Structural analyses suggest that the
iSH2 domain of p85 interacts with the C2 domain of p110.60 Thus,
it seems likely that these p85� mutations also activate PI3K signal-
ing by relieving the inhibitory effect of p85 on p110.11,66 Labora-
tory studies suggest that these mutations also lead to constitutive
PI3K signaling.11,66

Mutations in AKT family genes encoding for AKT1, AKT2, and
AKT3 have also been identified in human cancers. A single amino acid
substitution, E17K, in the lipid-binding PH domain of AKT1 has been
identified in breast, colorectal, endometrial, and ovarian cancers, as
well as melanoma.40,50,51 This amino acid change alters AKT1 lipid
binding, presumably leading to constitutive membrane localization in
the absence of PIP3. However, although phosphorylation on Ser473
was constitutive in this mutant, T308 phosphorylation was still re-
sponsive to PI3K activation.50 Thus, it is unclear if PI3K inhibitors will
effectively decrease AKT signaling in cancers with these mutations.
The E17K mutation has also been identified in AKT3 in some mela-
nomas.51 In addition, mutations affecting the kinase domain of AKT2
have been found in colorectal cancers; however, the functional conse-
quences of these mutations have not been assessed.52 Amplification of
AKT2 has also been reported in human tumors.53,54

PI3K Activation by Receptor Tyrosine Kinases and Ras

In normal epithelial cells, PI3K is often activated downstream of
RTK signaling. In cancers, these RTKs are often mutated, amplified, or
overexpressed, causing aberrant PI3K activation. When therapies tar-
geting RTKs are effective, they invariably lead to loss of PI3K signal-
ing.67 For example, PI3K is activated by epithelial growth factor
receptor (EGFR) in lung cancers harboring somatic activating muta-
tions in EGFR, and by human epidermal growth factor receptor 2
(HER2) in breast cancers with HER2 amplification.65,68-70 In these
cancers, EGFR or HER2 phosphorylates the kinase-dead ErbB3 that,
in turn, directly binds and activates PI3K.65,68-70 Thus, when these

cancers are successfully treated with EGFR- and HER2-targeted ther-
apies, respectively, PI3K signaling is turned off and the cells undergo
cell death. Similarly, glioblastomas frequently exhibit PI3K activation,
either through integration of signaling from multiple activated RTKs,
such as the constitutively active EGFRvIII mutant, or through the
combined activation of RTKs and loss of PTEN.71,72

The small GTPase Ras is also frequently mutated in human
cancers, and PI3K is an effector of Ras-mediated oncogenic signal-
ing.73 Early studies showed that Ras directly bound p110, and pro-
vided a direct link between Ras and PI3K.74 In addition, functional
studies demonstrated that PI3K activation appears to be crucial for
tumor initiation. For example, expression of a dominant-negative
p85� lacking the p110-binding domain inhibited Ras-mediated trans-
formation.8,75 In addition, expression of a p110� mutant that does not
directly bind Ras inhibited K-Ras–induced lung adenocarcinomas in
genetically engineered mouse models.76 Similarly, deletion of Pik3r1
and Pik3r2 abrogated K-Ras G12D-induced lung tumorigenesis.65

Although PI3K activation may be necessary for K-Ras–induced tu-
morigenesis, preliminary studies suggest that inhibition of PI3K sig-
naling alone may not be sufficient to shrink established tumors in vivo
or effectively treat K-Ras–mutated cancer cell lines in vitro.65,77 These
findings underscore the difference between killing established cancers
and blocking tumorigenesis and cell transformation. Furthermore,
these studies suggest that established cancers with KRAS mutations
may not be sensitive to single-agent PI3K pathway inhibitors.

Potential Roles for p110�, p110�, and p110�
in Transformation

While activating mutations in PIK3CA are frequently identified
in human cancers, no oncogenic mutations have been verified in
p110�, p110�, or the class IB catalytic isoform p110�. Although rare
somatic single-residue substitutions have been found in p110� and
p110� (www.sanger.ac.uk/perl/genetics/CGP/cosmic), the function
of these substitutions is unknown. Despite the lack of evidence for
activating mutations in these other p110 catalytic isoforms, recent
work has demonstrated the oncogenic potential of p110�, p110�, and
p110�. Interestingly, unlike p110�, overexpression of wild-type
p110�, p110�, or p110� is transforming in cell culture.13 Although
expression of the � and � isoforms is normally restricted to leukocytes,
increased p110� (as well as p110�) has been identified in some colon
and bladder cancers, as well as in glioblastomas.13 p110� appears to
provide the critical PI3K activity in acute myelogenous leukemia,
while p110� is upregulated by the Bcr-Abl oncogene in chronic my-
elogenous leukemia.78,79

Recent data also suggest a prominent role for p110� in PTEN-
deficient tumors. Targeted deletion of pten in the mouse prostate
results in prostatic intraepithelial neoplasia and carcinoma.80 Con-
comitant ablation of p110�, but not p110�, decreased PI3K prolifer-
ation signaling and prevented prostate tumorigenesis.35 Similarly,
inducible depletion of p110�, but not p110�, using short hairpin RNA
in PTEN-deficient human cancer cell lines extinguished PI3K-
mediated signaling and inhibited growth in vitro and in vivo.81 Dele-
tion of p110� also abrogated transformation of mouse embryo
fibroblasts by activated Ras or EGFR mutants to a more pronounced
extent than did p110� loss.35 These studies suggest that although
cancers driven by PIK3CA mutations are candidates for treatment
with p110�-specific inhibitors, treatment of PTEN-deficient cancers
may require agents with activity against p110�.
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PI3K PATHWAY INHIBITORS ENTERING THE CLINIC:
PRECLINICAL AND EARLY CLINICAL DATA

A number of potential therapeutics targeting the PI3K signaling cas-
cade have been generated. We will consider four different classes of
PI3K pathway inhibitors: dual PI3K-mTOR inhibitors, PI3K inhibi-
tors (that do not inhibit mTOR), AKT inhibitors, and mTOR catalytic
site inhibitors. Table 2 summarizes PI3K pathway inhibitors in clini-
cal trials.

Dual PI3K-mTOR Inhibitors

The catalytic domains of the p110 subunits and mTOR are
structurally similar, because they all belong to the phosphatidyl-
inositol kinase–related kinase family of kinases. Many chemical
inhibitors under development inhibit both mTOR and the p110 cat-
alytic subunits. These are termed dual PI3K-mTOR inhibitors. When
compared with the other types of PI3K pathway inhibitors, dual PI3K-
mTOR inhibitors have the possible advantage of inhibiting all PI3K
catalytic isoforms, mTORC1, and mTORC2. Thus, they should effec-
tively turn off this pathway completely and overcome feedback inhi-
bition normally observed with mTORC1 inhibitors (ie, rapamycin

analogs) that may limit their efficacy (Fig 1).28 However, it remains un-
known if dual PI3K-mTOR inhibitors will be tolerable at doses that effec-
tively inhibit all p110 isoforms and mTOR, or if their use will necessitate
sacrificing complete inhibition of one or more of the potential targets.

For many years, the PI3K inhibitor LY294002, a dual PI3K-
mTOR inhibitor, has been extensively used in preclinical studies.
Although LY294002 is unsuitable for patient use, the backbone struc-
ture of this compound has been exploited in the design of novel PI3K
inhibitors.7,90 SF-1126 (Semafore, Indianapolis, IN) is a prodrug of
LY294002 that is conjugated to a tetra-peptide designed to target
tumor vasculature, and this compound has demonstrated efficacy in
solid tumor xenograft models.7,90,91 In a phase I study of SF-1126,
mTORC1 inhibition in cancers was demonstrated by decreased S6
phosphorylation.82 No responses were observed, but stable disease
was achieved in 11 of 28 patients below the maximum tolerated dose,
without consistent effects on blood glucose.82

Other dual PI3K-mTOR inhibitors, such as NVP-BEZ235 and
NVP-BGT226 (Novartis, Basel, Switzerland) and XL765 (Exelixis, San
Francisco, CA) have entered phase I testing in clinical trials.30,90,92

There have been several preclinical evaluations of NVP-BEZ235.

Table 2. PI3K Pathway Inhibitors in Clinical Trials

Targets Compound (Company) Study Population
Reported

Efficacy/Responses Reported Toxicities References

PI3K/mTOR SF-1126 (Semafore
Pharmaceuticlas)

Phase I: advanced solid tumors SD in 11 of 28 pts DLT: grade 3 diarrhea (one pt) Chiorean et al82

NVP-BEZ235 (Novartis) Phase I/II: advanced solid tumors
(breast cancer-enriched)

N/A N/A ClinicalTrials.gov

NVP-BGT226 (Novartis) Phase I/II: advanced solid tumors
(including breast cancer)

N/A N/A ClinicalTrials.gov

XL765 (Exelixis) Phase I: refractory solid tumors SD in five of 36 pts Most frequent (� 10%) AEs:
elevated liver enzymes,
nausea, diarrhea

LoRusso et al83

Other AEs: anorexia/
hypophosphatemia, rash,
vomiting, and neurologic
complaints

PI3K PX-866 (Oncothyreon) Phase I: advanced solid tumors SD in two of six pts (initial
dosing cohorts)

Possible AEs: abdominal
discomfort, mild diarrhea

Jimeno et al84

No DLTs in early dosing
cohorts

XL147 (Exelixis) Phase I: advanced solid tumors SD (� 6 months) in six of 39
pts; one pt with HR CaP
with normalized PSA

AEs: grade 3 rash (DLT in two
of three pts at highest
tested dose); grade 3
arterial thrombosis (one pt);
grade 2 transaminitis (one
pt); grade 1 hyperglycemia
(four pts)

Shapiro et al85

NVP-BKM120
(Novartis)

Phase I: solid tumors N/A N/A Markman et al86

GDC-0941 (Genentech/
Piramed)

Phase I: advanced solid tumors Evidence for potential
antitumor activity in three
of 19 pts

Most frequent AEs: Grade 1
to 2 nausea, fatigue,
diarrhea, dysgeusia, and
peripheral edema

Wagner et al87

CAL-101 (Calistoga
Pharmaceuticals)

Phase I: relapsed/refractory CLL
or B-cell NHLs

PR in two of six pts, SD in
four of six pts in early
dosing cohorts

No AEs grade � 1 in first two
dosing cohorts

Flinn et al88

Akt (allosteric) MK-2206 (Merck) Phase I: advanced solid tumors SD in six of 19 patients Most frequent AEs: skin
(47.1%) and GI (41.2%)
toxicities; DLTs: grade 3 to
4 rash, grade 3 mucositis

Tolcher et al89

Abbreviations: SD, stable disease; DLT, dose-limiting toxicity; Pt, patient; N/A, results from patient treatment in clinical trials have not been reported to date; AE,
adverse event; HR CaP, hormone-refractory prostate cancer; PSA, prostate-specific antigen; CLL, chronic lymphocytic leukemia; NHL, non-Hodgkin’s lymphoma; PR,
partial response.
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NVP-BEZ235 slowed the growth of PTEN-deficient human cancer
cell line xenografts in mice, and it was well tolerated with no significant
changes in body weight.92 Additionally, breast cancer cell lines with
HER2 amplification and/or PIK3CA mutations appeared to be partic-
ularly sensitive to these agents; however, it should be noted that only
tumor stasis, and not tumor regression, was observed in vivo.93 NVP-
BEZ235 was further shown to induce apoptosis in estrogen-deprived
estrogen receptor–positive breast cancer cells harboring either
PIK3CA mutations or PIK3CB amplification.94 In this study, RNA
interference was also used to knock down p110�, p110�, or both in
these cells. In some estrogen receptor–positive breast cancer cell lines
harboring a PIK3CA mutation, dual knockdown of both p110� and
p110� led to greater apoptosis following estrogen deprivation com-
pared with knockdown of either isoform alone.94 These results under-
score a potential benefit of inhibiting both p110� and p110�, even in
cancers that harbor specific genetic activation of one isoform.94 A
study with genetically engineered mice also demonstrated that NVP-
BEZ235 was highly effective at shrinking murine lung tumors driven
by a p110� H1047R transgene.65 Recently, phase I results for the dual
PI3K-mTOR inhibitor, XL765 were reported at the 45th American
Society of Clinical Oncology (ASCO) annual meeting (2009). There
were no responses, but stable disease was noted in five of 36 patients.83

There was evidence of 50% to 80% pathway inhibition in surrogate
tissue. However, it is unclear whether this level of inhibition will be
sufficient to induce shrinkage in potentially responsive tumors, or
whether more complete inhibition will be required. No significant
changes in serum glucose were noted, although an augmentation in
food-induced plasma insulin increases was observed.83

PI3K Inhibitors

The PI3K inhibitors can be divided into isoform-specific inhibi-
tors or pan-PI3K inhibitors. Pan-PI3K inhibitors target all class IA

PI3K in the cancer. These include wortmannin derivatives such as
PX-886 or wortmannin prodrugs such as the self-activating viridans
modified by dextran linker moieties that are designed to increase
permeability and extend serum half-life.95-97 These agents exhibit
cytostatic antitumor effects in vivo.95-97 The presence of PIK3CA mu-
tations appears to predict for sensitivity to PX-866 across an array of
cancer cell lines derived from different tissues of origin.77 Interestingly,
PTEN loss also appears to predict for PX-866 sensitivity, despite its
relatively low efficacy toward p110�.77 Animals treated with PX-866
experienced hyperglycemia with decreased glucose tolerance as a ma-
jor toxicity of PI3K inhibition, but this could be overcome with the
oral antidiabetic agent pioglitozone.98 Phase I clinical trial results for
other pan-PI3K inhibitors have also been reported. Of 19 patients with
solid tumors treated with GDC-0941 (Piramed/Genentech, Slough,
United Kingdom/South San Francisco, CA), three demonstrated po-
tential signs of antitumor activity.87 Another pan-PI3K inhibitor,
XL147, produced durable disease control in six of 39 treated patients.
As observed with the dual PI3K-mTOR inhibitor XL765, plasma glu-
cose levels were minimally affected by XL147, although an augmenta-
tion of food-induced plasma insulin increases was noted.85

A possible advantage of isoform-specific PI3K inhibitors is that
they may be tolerated at doses resulting in more complete target
inhibition with fewer adverse effects. Isoform-specific inhibitors that
selectively inhibit p110�, �, �, or � catalytic subunits are under inves-
tigation in preclinical studies.99,100 Indeed, a p110�-specific inhibitor
tested for refractory non-Hodgkin’s lymphoma and chronic lympho-

cytic leukemia induced responses in 6 out of 12 patients (presented at
the 45th Annual Meeting of ASCO in 2009).80

AKT Inhibitors

Both adenosine triphosphate (ATP) mimetics and noncatalytic-
site AKT inhibitors are under active clinical development.90,101 Can-
cers with AKT1 mutations and AKT1 and AKT2 amplifications may
be expected to be among the more sensitive to AKT inhibitors. How-
ever, this class of inhibitors will not block the non-AKT effectors of
PI3K signaling and, paradoxically, could actually increase PI3K-
dependent activation of those effectors via loss of negative feedbacks.
This is especially important in light of the recent findings that the
PDK1 substrate SGK3, and not AKT, may play a more prominent role
in promoting PI3K-dependent viability in some cancers harboring
PIK3CA mutations.102 Despite these findings, a recent study demon-
strated that a noncatalytic site AKT1/AKT2 inhibitor was effective
against breast cancer cell lines with PIK3CA mutations and HER2
amplifications.101 Phase I results for the allosteric pan-AKT inhibitor
MK-2206 (Merck, Whitehouse Station, NJ) showed stable disease in
six of 19 patients and decreases in CA125 in patients with ovarian
cancer. Adverse effects included rash and hyperglycemia.89

mTOR Catalytic Site Inhibitors

Rapamycin interacts with FKBP12 in mammalian cells to form a
complex that directly binds to the FKBP12-rapamycin-binding do-
main of mTOR in mTORC1, but not in mTORC2.103,104 Conversely,
ATP-competitive mTOR inhibitors target the kinase domain of
mTOR to impede the activity of both mTORC1 and mTORC2. Inhib-
iting mTORC2 would provide the theoretical advantage of blocking
AKT activation. An ATP-competitive mTOR inhibitor might be more
effective than rapamycin because, by blocking AKT activation, it
would mitigate the activation of PI3K that often accompanies
mTORC1 inhibition (ie, de-repression of the negative feedback, Fig
1). Intriguing preclinical data are emerging from studies of these
compounds that shed new light on the potential limitations of rapa-
mycin analogs. Feldman et al105 demonstrated that two mTOR kinase
domain inhibitors, PP242 and PP30, inhibit both mTORC1 and
mTORC2. Unlike acute rapamycin treatment, which activates AKT,
PP242 administration to mice suppressed AKT activation in tissues.
PP242 was also a more effective inhibitor of proliferation than rapa-
mycin.105 Surprisingly, the improved efficacy of PP242 appeared to be
due to more effective mTORC1 inhibition, rather than through its
additional inhibition of mTORC2.105 Similarly, the ATP-competitive
mTOR inhibitor Torin1 impeded cell proliferation predominantly
via its effects on mTORC1, not mTORC2.106 Both PP242 and
Torin1 were more effective inhibitors of 4E-BP1 phosphorylation
and cap-dependent RNA translation than rapamycin.103,105,106

Three additional ATP-competitive mTOR inhibitors—WAY-600,
WYE-687, and WYE-354—have been shown to inhibit proliferation
of a variety of cancer cell lines more effectively than rapamycin, caus-
ing G1 cell cycle arrest, and in some cases, apoptosis.104

Although the clinical results with PI3K pathway inhibitors are
preliminary, their efficacy has modest at best. For their effective devel-
opment, it will be imperative to understand why these drugs fail to
produce a response when they do. Is the lack of activity due to inade-
quate inhibition of the target, or because complete inhibition of the
target is not sufficient to produce antitumor activity? Indeed, most of
the studies to date have not assessed this issue systematically. To
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answer this question, future studies with quantitative pharmacodynamic
assessments will be required to determine the degree of target inhibition.
For example, a study with even a small number of patients with favorable
genotypes (eg, PIK3CA mutants or HER2 amplified) that correlates
pharmacodynamic responses of PI3K pathway inhibition with out-
comes may prove invaluable in identifying the reasons for lack of effi-
cacy.

POTENTIAL CLINICAL USES FOR PI3K PATHWAY INHIBITORS

Thus far, preclinical studies have shown that PI3K pathway inhib-
itors may have significant single-agent activity in a few types of
genetically defined cancers: HER2-amplified breast cancers, cancers
with PIK3CA mutations, and PTEN-deficient cancers.65,77,92,93,101 To
this point, data suggest that cancers with KRAS mutations may be
fairly resistant to PI3K pathway inhibitors.65,77 Consequently, it seems
likely that the presence of KRAS mutations will limit the efficacy of
single-agent PI3K pathway inhibitors in cancers harboring both KRAS
and PIK3CA mutations, such as many colon cancers.

In addition to these genetically defined settings, there may be
other opportunities to target the PI3K pathway. For example, PI3K
pathway inhibitors may be effective agents in the treatment of certain
cancers that acquire resistance to RTK inhibitors. Cancers that are
sensitive to receptor tyrosine kinase inhibitors (TKIs) have PI3K un-
der the exclusive control of that RTK.67 When a TKI works, it leads to
downregulation of PI3K activity. For example in HER2-amplified
breast cancers, trastuzumab disrupts the interaction between ErbB2
and ErbB3, resulting in ErbB3 dephosphorylation and loss of interac-
tion with PI3K.107 Furthermore, the presence of an activating PIK3CA
mutation or depletion of PTEN correlates with a poor response to
trastuzumab, presumably because these cancers fail to downregulate
PI3K signaling in response to the anti-HER2 therapy. Furthermore,
when cancers that were initially sensitive to TKIs subsequently develop
resistance, they invariably find a way to maintain PI3K signaling in the
presence of the TKI.67 These cancers therefore may be susceptible to
addition of a PI3K pathway inhibitor to the TKI to re-induce remis-
sions. This is an attractive approach in HER2-amplified breast cancers,
because they appear to be sensitive to PI3K pathway inhibitors even
before they develop resistance to anti-HER2 –based therapies. Indeed,
the HER2-amplified breast cancer cell lines with PIK3CA mutations
are resistant to trastuzumab, and this can be overcome with treatment
with GDC-0941.44,107 Similarly, PTEN loss, or activating mutations in
PIK3CA, confers resistance to lapatinib, which can be overcome by
treatment with NVP-BEZ235.68

Potential of Combining PI3K With MEK

Pathway Inhibitors

When cancers are sensitive to TKIs (ie, oncogene-addicted to an
RTK), the TKI usually leads to downregulation of PI3K and other
pathways, including the MEK-MAPK pathway. Thus, it remains un-
clear whether single-agent PI3K pathway inhibitors will promote
dramatic responses (comparable to gefitinib in EGFR-mutant lung
cancers or imatinib in chronic myelogenous leukemia), even in sensi-
tive cancers. Most models of cancers that are sensitive to single-agent
PI3K pathway inhibitors have demonstrated tumor stasis in vivo
rather than frank tumor regressions.91-93,95-97 Consequently, it may be
necessary to combine PI3K pathway inhibitors with other agents to

induce dramatic responses. Furthermore, there may be cancers that
show no response to single-agent PI3K pathway inhibitors that will
respond to PI3K pathway inhibitors combined with other therapies.
For example, inhibition of PI3K signaling with NVP-BEZ235 failed to
shrink established Kras G12D-driven lung tumors.65 However, com-
bined PI3K and MAPK pathway inhibition by treatment with NVP-
BEZ235 and the MEK inhibitor ARRY-142886 led to marked tumor
regression in this Kras lung cancer model.65 Similarly, combined PI3K
and MEK inhibition was required to effectively shrink EGFR-mutant
lung cancers in genetically engineered mouse models.108 Findings
such as these are spurring the biotechnology and pharmaceutical
industries to combine therapeutic inhibitors of these two pathways.

SUMMARY

Great strides are being made in our understanding of the diverse roles
that PI3K signaling plays in cancer initiation, progression, and main-
tenance. Novel therapeutics targeting different components of this
pathway are demonstrating efficacy in an array of human cancer types
in preclinical studies, and these drugs are being carried forward into
clinical trials. There is growing preclinical evidence that some geneti-
cally defined cancer subtypes may be the most sensitive to single-agent
PI3K pathway inhibitors. These include cancers with PIK3CA activat-
ing mutations, loss of PTEN, and breast cancers with HER2 amplifi-
cation. However, it remains to be determined whether these sensitive
cancers will demonstrate stable disease or tumor shrinkage in
response to single-agent therapeutics. Conversely, cancers harbor-
ing activated Ras mutants appear to be insensitive to PI3K pathway
inhibition alone. In such cases, effective treatment with PI3K inhibi-
tors may require concomitant therapies targeting MAPK signaling.
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